When Squids Fly

In this article I’m going to not tell you about cuttlefish.

We had dinner with Dave, Nancy and their daughter Sidney last night, here on our Caribbean coastline in Mexico, and all of us were remarking on the cuttlefish we’d been seeing out on the reef lately.  Cuttlefish are beautiful and enchanting little creatures, about nine inches long, with graceful tentacles hanging from their face, huge, mesmerizing eyes with W-shaped pupils, and an apron-like fin all the way around their body that undulates like a dust ruffle to propel them around.  They’re inquisitive, and whenever Susan and I come across a few, they will usually stay with us for a while as we swim.  Caribbean reefs are just full of beautiful and mysterious creatures, but Susan and I were becoming especially fond of these cuttlefish.

The specific question that had been intriguing Dave was why they always seem to occur in threes.  Susan and I had noticed this too.  You’ll see them in ones and twos now and then, but usually threes.  Fascinating.  I started digging.  What I learned was just amazing.  Here’s what I found out:

Cuttlefish don’t occur in the Caribbean.

D’oh!” I said to my laptop monitor, and smeared my hand down my face.  It shows you how much I still have to learn about my new ecosystem.

No one’s sure why they don’t occur in the Caribbean.  Cuttlefish have one of the strangest distributions you can imagine.  They’re in the Atlantic and they’re in the Pacific—it’s not like they’re not in our oceans.  They’re on the European coastlines and the African coastlines and the Asian coastlines and even the Australian coastlines, but they do not touch the Americas.  The best guess is that they evolved in the old world, and then the big oceans got too cold and deep for them to cross, being warm water and shallow water creatures.  There’s a part of me that’s somewhat surprised that they haven’t managed to get introduced somehow, and start throwing things out of whack like the lionfish is doing.

What we’ve been looking at is called the Caribbean reef squid (Sepioteuthis sepioidea), and they look a lot like a cuttlefish—in fact, their scientific name alludes to the resemblance (cuttlefish being the order Sepiida).

Well, they may not be cuttlefish, but they are cephalopods, and cephalopods are my second-favorite mind-blowing organisms after jellyfish, so Dave, don’t be disappointed yet.  Trust me, Caribbean reef squids are fall-down-and-slap-the-ground amazing.  For one thing, they can fly.  More on that in a bit.

Cephalopods are the octopi, squid, cuttlefish and nautiluses.  They are a mash-up of legacy evolutionary traits and astonishing innovations not seen anywhere else.  They’re shellfish (mollusks) who took a bizarre evolutionary turn, and I hugely enjoy bizarre evolutionary turns, because they remind us that life on this planet is not following any grand scheme, and neither are we.  (We became us by accident too, believe me—and by the way, we only made it by the skins of our teeth.)

CaribbeanReefSquidBrown
Caribbean Reef Squid (Sepioteuthis sepioidea) Photo by Nhobgood Nick Hobgood CC BY

Cephalopods  can change color in a flash, by conscious control, using muscular contraction and pigment cells called chromatophores.  Their colors shimmer and dance across their bodies as you watch.  They can also change their texture instantaneously, going from silky smooth to rough and spiky in a blink, and they can change their shape to mimic other creatures or objects.  All that remains of their shell (ignoring the nautilus for now) is a beak a lot like a parrot beak, which is dead center between their tentacles (actually called arms) which they use to crunch the shells of their prey.  A large species of octopus can have roughly the intelligence of a dog or a cat, depending on who you talk to, and squids and cuttlefish have been studied less, but appear not to be far behind.

That intelligence level is not bad for a shellfish, and it fascinates scientists, because their brains and nervous systems are so radically different from our own, or from any mammal, or even bird or reptile.  They are such different creatures that in many ways intelligence in cephalopods can be considered a case of convergent evolution.  That’s where two species independently arrive at a similar solution to a problem.  Two thirds of their neurons are not even in the brain, but are out in the arms, which have a lot of autonomy in what they do.  It is not a centralized system like ours, and if you watch an octopus forage in a rocky reef, you’ll see this design at work—they are reaching into numerous crevices and hidey-holes simultaneously.  Clearly they’re thinking about eight things at once.

Two_Caribbean_Reef_Squid,_Bonaire,_Dutch_Antilles
Two Caribbean Reef Squids (in different moods)
Photo by Clark Anderson CC BY-SA 2.5

You can put a crab in a jar, and an octopus will figure out how to unscrew the lid and get it out.  You can put the octopus in the jar, and he’ll figure out how to open it from the inside.  I don’t know if they’ve tried any of this with a squid or a cuttlefish.  An octopus named Otto in the Sea Star Aquarium in Coburg, Germany, got annoyed at the 2,000-watt spotlight that was left on all night above his tank, so he started hitting that thing with jets of water and shorting the place out.  I’m not making this up.  It threw the aquarium into crisis.  Everything went down including the pumps, and it threatened the lives of all the creatures in all the tanks, and it happened every night.  They had to stake the place out to figure out what the hell was going on.  Otto had other quirks:  He was fond of doing something a lot like juggling with the hermit crabs in his tank.  He would periodically rearrange everything in it (including the hermit crabs), and he liked to damage the glass by smacking it with rocks.  There are other stories from other aquariums.  They are talented escape artists, and will leave their tank at night to help themselves to dinner in the crab exhibit, returning to their own tank to eat, and then hiding the remains.

But the thing is, they don’t live long.  Sophisticated and intelligent though they are, one or two years is all you get if you’re a cephalopod.  It’s called being semelparous—they die immediately after they reproduce, and there’s not a thing you can do about it, and I remember this causing a lot of wet eyes around the Monterey Bay Aquarium from time to time when I was a docent there.  These creatures are aware, and they have personalities, and attachments get formed—and then they die.

 

*          *          *           *

 

In 2001, Sylvia Macia and her husband Michael Robinson, both marine biologists, were in a boat off Jamaica when a Caribbean reef squid burst out of the water with its fins flared outward and its arms held in a radial pattern, and it sailed to a height of six feet above the water over the course of a thirty-foot flight before dropping back in.  They were flabbergasted.  Flying fish do this (family Exocoetidae), and it’s a cute trick for predator evasion.  There’s no better way to befuddle your pursuer than to blast through a reflective ceiling and vanish.  But squid?  There had been a few rumors and folk tales, but hell, the ocean is just full of rumors and folk tales.  Thor Heyerdahl, who has (and deserves) some respect, reported squid occasionally falling on his raft Kon Tiki.  And now and then a biologist will find a squid dead on the floor next to his tank.  But those kinds of jumping mishaps can happen with any fish, including a goldfish.  This thing was flying.

They sent out a signal to the mollusk community.  Reports started trickling in.  Maybe this had been witnessed before, but people had assumed they were looking at flying fish.  I mean, let’s face it, a flying squid is just not something that has a cubbyhole in your brain.  But Macia and Robinson were marine biologists.  They knew what a Caribbean reef squid was.  Aware of the possibility now, scientists began paying attention with new eyes.  The sightings continued to mount.  But they were all anecdotal.  There were no photographs.  There was no proof.  The sightings seemed to be very rare, and the flights are so brief, and squid are nocturnal, and catching a flight on film was looking like it might be impossible.  They published a paper anyway, in 2004.  It was well received.  But they still had no proof.

Then, in 2009, a retired geologist named Bob Hulse was on a cruise ship off Brazil.  He was an amateur photographer, and he was packing a wildlife camera a lot like Susan’s.  He was shooting in burst mode, and at a high resolution, and he captured a handful of “unusual creatures” flying above the water.  Though it was not his field of science, he was observant enough to know that he was seeing something weird.  He forwarded the shots to the University of Hawaii, and they forwarded them to a scientist named Ronald O’Dor, now at Dalhousie University in Halifax, Canada, and that’s who started working with the best and, at the time, only photographic documentation of flying squid.  (They have since been photographed off Japan.)  He knew the data he was looking at was gold.  The exact interval between the frames was known, and he could calculate the velocity and the acceleration, and get a close look at the body parts.  He lit into the project.

What O’Dor is piecing together is amazing.  Cephalopods already have the jet propulsion thing dialed in.  That was known.  They jet around underwater, and blast away backwards as an escape technique.  They fill their body (mantle) with water and force it out under great pressure through an organ by their mouth called a funnel.  The funnel can be directed, like the nozzle of a guided missle, so they have control.   They extend their fins, and hold their arms out stiffly to create another flight surface, and they rocket through the air like little cruise missiles, trailing exhaust streams of water and steering with their flight surfaces.  Gliding is too tame a word for what they do.  They have a propulsion system onboard, and they have aerodynamic control.

This is breaking science (he presented his paper in 2012), so there is still lots of argument, but O’Dor now believes that they do not fly to escape predators—they do it to travel long distances.  They do it to escape the drag of the water.  He believes that it explains some long migrations that had always seemed implausible.  Using Hulse’s photographs, he calculated that they get five times the speed in the air that he had ever measured in the water from the same propulsive effort.  They fly.  They fly to get around.  But we never knew they did it, because they do it at night, when the birds aren’t out.

Six species of flying squid have now been identified.

The Caribbean reef squid was the first.

 

*          *          *           *

 

The Caribbean reef squid communicate with each other through color.  Over forty distinct patterns of color and shape have been identified, and that’s just for communication.  There are looks scientists call bars, belly stripes, dark arms, yellow flecked, speckled belly.  When they’re pissed off, their brow ridge turns metallic gold.  They layer the artwork, like imaging programmers do.  There will be a background, and then one or more patterns or shapes overlaid on top of it.  Scientists have modeled the whole thing in Photoshop, and given them names.  They can flash one message to a squid on their right, and a different one to a squid on their left.  The courtship display is a shimmering, moving background overlaid with zebra stripes.  Some scientists are arguing that they have both a vocabulary and a syntax, and that that constitutes language.  But only a few are saying that.  Language in animals is controversial.  It takes cojones to use the L-word in the scientific community.

They can imitate anything.  When they flee into open water they become pale.  When they flee into the coral they become rough-textured and brown.  When they’re stalking prey they can make themselves look like sargassum seaweed.  They can become a parrotfish by swimming backwards, holding their arms out like a tail and displaying eyespots on their rears.  Like all cephalopods, they can shoot out a cloud of ink to confuse a predator, and sometimes they’ll do this and then real quick make themselves look like an ink cloud next to the ink cloud.

They are very social.  They hang out in schools called shoals, and there is a hierarchical social structure, based mostly on size.  The shoal will have sentinels around its perimeter, all facing outward in different directions.  If a predator needs to be distracted or confused, one of the larger squid will rise to the challenge.  Mixed schools have been observed, with other species of squid present, and there is an association with two species of goatfish, who will forage on the bottom beneath the shoal of squid, protected by their vigilance, but it’s not clear what if anything the squid get out of it.

The young hide in the turtle grass beds, and the older ones like to shoal in the open water, and here, Dave, I’m circling back to your question.  When they come into a reef, it’s usually to mate.  To get the girl, a male must intimidate and out-display other males, and these face-offs will be going on in the coral, always in the presence of a female.  Two plus one makes three.  I’ll bet that’s what we’re seeing.

In the end, the winner approaches the girl.  At first she flashes an alarm pattern at him, but he persists, comforting her by blowing water across her, jetting away briefly, and then returning, in his shimmering, zebra-striped splendor.  This might go on for an hour.  Finally, when she has succumbed to his charms, he displays a special pulsating pattern and attaches a sticky packet of sperm called a spermatophore to her side, and leaves.

So in the end, it is she who performs the sexual selection for the species, choosing whether to use the spermatophore.  She can place it herself into her sexual organ, called a spermatangia–or she can discard it.  If she has deemed the male to be worthy of continuing his evolutionary journey, the next thing she does is find a place to lay her eggs.  Then she dies.  She never meets her children.

Now you know.

 

 

By |2017-05-24T00:03:04-05:00October 28th, 2014|Nature Essays|12 Comments

Absurd Beaks and Materials Engineers

My principal question was this:  When a toucan tries to fly, why doesn’t he end up planted in the ground like a lawn dart?

And when I thought slightly more seriously about this, I realized that I had several other questions about the toucan as well.  How did that beak happen?  Why would such a thing evolve and what is it for?  If it doesn’t pull him straight toward the ground at thirty-two feet per second squared, how does that engineering work?  It clearly has enough strength to take the beating any beak has to take.  It must weigh something.

As children, toucans were probably among the first five or so birds we all learned the names of, but I was realizing that I know almost nothing about them.  So I am setting out to change that.  Who are these beautiful birds with the absurd beaks?

And there is another reason I’m writing this, and it has to do with the fact that I’m a birder.  I’m not a great birder, but I am a birder, and birders are an odd lot.  I’ll tell you something about us:  There is a handful of birds out there which are so iconic that any birder will simply never forget his first sighting.  I remember my first bald eagle (Alaska, 1984), my first peregrine falcon (kayaking off Big Sur, 1991) (I got so excited I almost capsized and drowned), and my first flamingo (Celestun, Mexico, 2007).

And Susan and I both saw our first toucan in November of 2007 in a jungle fifteen miles southwest of where I’m sitting right now, and here’s the personal connection:  Early next month we’ll be moving to that jungle.  That very spot.  We were looking at property at the time, and now we’re buying it.  Five acres, with an off-grid home.  Toucans will be a regular part of our lives.

It’s time to learn something about them.

 

*          *          *          *

 

tuca,n topaz1
Keel billed toucan (Ramphastos sulfuratus) on a neighbor’s property.
Photo by Jim Fossheim.

The argument about what the beak is for has been going on for about a century and a half, and it’s showing few signs of resolution.  The first theory came from The Man himself:  Charles Darwin was convinced that the toucan’s beak was for a sexual display.  That’s been discredited, but I can see why he went there.  Most absurd things you see in nature are about sex.  (Most absurd things you see in the human race are too, but that’s off-topic for a Ranger Randy article.)  It’s a known phenomenon, and it even has a name:  It’s called sexual selection.  That’s what they call it when a trait evolves which contributes absolutely no survival value, but does help the organism attract a mate and reproduce more successfully.  The example they always use is the tail of the male peacock.  But the problem with the toucan’s beak is that both sexes have one, and they’re identical.  That almost never happens in courtship display adaptations, especially in birds.  Almost always, it’s only the male who gets weird.  The female tends to stay subdued in appearance and practical in design, because she has an actual job to do—she has to bear those children and raise them, and she may or may not be a species lucky enough to get any help in that from the male.

The next theory I ran into was that they have those outrageous beaks because they eat fruit.  Well, okay, they are fruit eaters (frugivores) but the problem I have with that theory is that the forest is just full of fruit-eating birds who have perfectly ordinary-looking beaks.  Orioles come to mind.

Hooded_oriole_(9154173510)
Hooded Oriole (Icterus cucullatus)
By U.S. Fish and Wildlife Service Headquarters
[CC BY 2.0], via Wikimedia Commons

It was suggested on the National Geographic website that the beaks allow them to reach fruit farther away from themselves on branches that wouldn’t support their weight.  Sorry, I’m not convinced by that one.

Another suggestion was that by reaching farther away for fruit without having to move, they are conserving energy, and improving their calorie mathematics.  That one didn’t sell me either.

Some have suggested that the beak intimidates predators and competitors.  Well, if so, it’s all show, because the beak is not strong enough to be used as a weapon, and toucans don’t fight with them.

It’s been proposed that they can reach farther into tree cavities for food.  It’s been proposed that it helps them plunder hanging nests (they can be egg-stealers).

And the scientific community was all abuzz in 2009 because Glenn Tattersall of Canada’s Brock University did a very interesting study and proved that the beaks are used for heat exchange.  They are well-supplied with blood, they are not insulated by feathers, and the toucan can regulate the blood flow to radiate away more or less heat and regulate his body temperature.  A wave of exuberant articles hit the popular press.  The British paper The Independent crowed, “Mystery of the Toucan’s Beak Solved.”

Well, I beg to differ, and so does the author of that study.  There is a difference between what an adaptation is currently used for, and why it evolved.  If you actually read the paper in Science Magazine, Tattersall himself says that the evolutionary forces that led to the beak “remain elusive.”  That said, it was a wonderful and important study, and he did conclusively prove, in an ingenious way, that they thermoregulate with their beaks.  (This is what jackrabbits’ ears are for also—they have nothing to do with hearing.)  But it could easily be what scientists call an exaptation—something that evolved for one purpose and then, down the line, got used for another.  A perfect example of an exaptation is bird feathers.  They originally evolved for insulation, and only later were adapted for flight.

Now, I want you to bear in mind that I’m an amateur naturalist.  My estimation of this situation is not going to stop very many great minds in their tracks.  But for what it’s worth:  I don’t think we’ve figured this one out yet.

As you probably guessed, the beaks are very lightweight.  That’s why there’s no lawn dart phenomenon.  The inside of those beaks is a three-dimensional matrix of tiny little struts, a sort of latticework, but in 3-D.  (The insides of our bones look like this too.)  The result is that although the beak is a third of his body length and up to fifty percent of his surface area (which is why it’s a great radiator), it is only a twentieth of the bird’s mass.

But in the case of the toucan, evolution has added another innovation to this design which has the engineering community all abuzz.  A materials scientist and aerospace engineer named Marc Meyers, at University of California, San Diego, looked into the design of the toucan’s beak, and found that as well as having that 3-D matrix of little struts, which are pretty common in the animal world (they’re called traberculae), there are also membranes spanning each space created by them, like little drum skins.  It is as if the whole structure had been dipped in a soapy liquid and allowed to dry.  This adds another whole dimension to the strength of that beak, because now what you have is struts carrying compression loads, and membranes carrying tensile loads, and if you’re not familiar with those terms, they’re pretty much what they sound like.  (I know them because Susan hung out with a lot of architects for most of her career.)  Compression strength means it resists being compressed.  Tensile strength means it resists being pulled apart.  A rope has high tensile strength and zero compression strength.  A stack of bricks is just the opposite.  The toucan’s beak has both.  But it gets even better, because there’s a third effect as well:  The cells created by the membranes are airtight, so there is also cushioning from air pressure, like closed-cell foam rubber.  It’s looking like this design is unique in the bird world, and Meyers is advocating getting some technology-imitating-nature stuff going on this, because he is really impressed with the strength-to-weight ratio of these beaks, and also with the complexity of the ways it absorbs force and resists damage.  He thinks there could be lots of applications for it.

toucan2
Gregarious, social and playful: A family of keel-billed toucans traverse the canopy.
Photo by Jim Fossheim

The toucan we see most often around here is the keel billed toucan (Ramphastos sulfuratus), and it’s been delightful to learn a few things about them.  They’re very gregarious, very social and very playful, and they enjoy tossing things back and forth to each other (they’re quite dextrous with those beaks).  One of their courtship rituals is a fruit toss, in which male and female flip morsels of fruit into one anothers’ mouths.  They travel around in small family groups of six or twelve, and they’re actually not the greatest flyers.  They’re a deep forest bird, with stubby wings, and they prefer hopping to flying.

Hopping, however, is something they’re very good at, and since they stay mostly in the upper canopy, which is very contiguous in a tropical forest, they can roam a long way just by boinging from branch to branch.  They nest colonially in tree cavities, and that cracks me up.  It seems like every time I write an article, at some point I come across something that makes me laugh, and this time that’s what it was.  Think about this:  Space is tight in your basic tree cavity, and they’ve got those humongous beaks.  So they have a trick when they settle down at night, in which they tuck their beak completely under themselves, and wrap their tail, which is basically double-jointed, forward over it, and become a little ball of feathers.

The young take eight to nine weeks to fledge (grow up), which is longer than most, and the main reason for the delay is that is that they have to grow that beak.  They’re not born with it.  It would never fit in an egg.

And yes, the female does get help from the male in child-rearing.

And I’ll leave you with one more important fact:  According to the expert breeders at Emerald Forest Bird Gardens in California, toucans hate sugary breakfast cereal.  Never touch the stuff.

Now you know.

 

 

 

By |2017-05-24T00:03:05-05:00October 20th, 2014|Nature Essays|4 Comments

A Well-Defended Tree

On the path that runs from Dave and Nancy’s back porch to the Yal Ku Lagoon there is a small, unassuming acacia tree.  I’ve brushed past it hundreds of times.  It is a perfectly ordinary looking acacia tree—pleasant to look at, shades the trail nicely, lovely when it blooms—but man, you’d better be nice to it, because it is the most well-defended tree on the property.  In fact, it is defended by an army.  An army of ants.

I love symbiotic relationships.  If there’s anything that fills me with wonder more than organisms do, it’s the relationships between them.  And this one will blow you away, I promise.

The acacia is Vachellia collinsii, commonly called the swollen-thorn acacia, or the hollow-thorn acacia, and those thorns are so wicked that one punctured my truck tire once.  The thorns are hollowed out and occupied by one of a couple of species of ants.  The ants are in the genus Pseudomyrmex, and I tried to figure out which species we have back there, but they’re too little and too mean and I gave up.

AcaciaAnts
Ants patrol Dave and Nancy’s acacia. The beltian bodies are visible on the leaf tips.
Photo by Randy Fry

They nest and raise their larvae in the hollow thorns, but providing shelter is not all this tree does for them.  It also feeds them.  In fact, it feeds them carefully and generously, and with a diet tailored to their needs.  There are little nubs at the bases of the leaves called extrafloral nectaries which exude a sweet nectar and keep the adult ants well fed, but then at the tips of the new leaves there are also little pods called beltian bodies which are rich in protein, and the ants nip those off and feed them to their larvae.

AcaciaTire
My truck tire impaled by an acacia thorn
Photo by Randy Fry

What does the tree get out of it?  Well, let me put it this way:  You are looking at a tree that never has to worry about herbivore attack.  And if you’re a gardener you’ll know what a game-changer that is.  Just about every other plant in the world is plagued by insects from aphids to grasshoppers to mites to worms to caterpillars, not to mention the larger herbivores like mammals and reptiles…yet here this acacia tree serenely stands—in the middle of a tropical forest where the insect life is grandiose in its proportions—and it’s completely unscathed.  It has even stopped producing the chemical defenses against herbivore attack that other acacias use (alkaloids and cyanogenic glycosides), and it does not even have to toughen its growing leaf tips like other plants do, with the result that it can grow a lot faster and out-compete its neighbors.

The ants attack leaves as well as herbivores.  Any leaf of a different species that touches an acacia leaf gets quickly clipped away.  The acacia tree looks like it’s nestled in comfortably against its neighbors, but if you look closer you’ll notice that not a single leaf of a neighboring tree is actually touching an acacia frond anywhere.  Often the ants even keep the ground clear around the trunk of the tree.  I’m not making this up.  There are signs of it around Dave and Nancy’s tree.  They weed around it, preventing any other plants from getting established and competing for the water and nutrients.  This acacia lives a charmed life.  It doesn’t have a thing to worry about, not even competition.  This acacia lives in a patrolled, gated community.  Nothing goes on in that tree without the permission of the ants.  All the tree has to do is sit there and grow.

AcaciaWeeding
It is probably the ants who are keeping this area clear of weeds
Photo by Randy Fry

What’s interesting, though, is that the ants do not attack absolutely everybody.  I had this article half-written when Susan and I went walking around the Coba ruins yesterday and saw a wasp nest in a hollow-thorn acacia.  We looked at each other and blinked.  “Huh?” we said in unison.  We checked for the ants.  They were there alright.  We walked on, and saw a few more wasp nests in a few other acacias.  This was not random chance.  It was a preference.  I came home and did some more digging.  The wasps paint the touch points with a chemical that deters the ants and keeps them out of the nest.  The wasps like it because they are protected from predators by both the thorns and the ants.  (Yeah, I know, it sounds like an unpleasant bit of foraging to me, but there are animals who will tear up a wasp nest to get the grubs.)

Birds also build nests in hollow-thorn acacias, and love it there for all the same reasons the wasps do, but it is “not yet clear” why the birds do not get attacked.

AcaciaWaspNest
A wasp nest in an acacia at the Coba ruins
Photo by Susan Fry

One reason for this “not yet clear” stuff is that hollow thorn acacias have not been well-studied historically. First of all, I can attest that those ants do not like naturalists any better than they like herbivores.  But also, back in the day, botanists did all their field work with plant presses, and those thorns can really screw up a good plant press, and on top of that you end up with a plant press full of extremely vindictive ants.  They’re not the most pleasant trees to study, and I’m looking forward to moving on to my next article.

There are a few downsides to this system, though.  The acacia gets pollinated by bees, and the bees must avoid the ants, though they seem to manage it okay.  Also, the acacias do not colonize new areas well, because both tree and ants have to move together.  This is, after all, almost a full, two-way symbiosis (it’s called an obligate symbiosis).  The ants cannot survive at all without a host acacia, and as for the acacia, well, it does not survive well without the ants, because it has no other defense against herbivores.  An acacia seedling in a new area must wait about nine months before it can hope to get befriended by an ant colony, so it gets hammered and weakened by the bugs, and then, without its army of tree pruners, it gets covered over and shaded out pretty quickly.  That’s why it reproduces mostly via suckers from its roots, where it can immediately benefit from the neighboring ant colony.  An ant colony can span several trees, because they have multiple queens, making them what computer programmers call “scaleable.”

They did some studies on ant-acacia partnerships in Africa and discovered that if you fence off the acacia to protect it from large herbivores, it scales back its production of nectaries and thorns because it no longer needs the services of the ants.  I kid you not.  It lays them off.  But it sort of backfires, because then the ants have to find another way to make a living, so they go back to farming aphids like their ancestors did, and end up not only allowing these plant-eating aphids in the tree, but promoting and protecting them.

AcaciaSpider
Bagheera kiplingi
Photo by Randy Fry

Here in Central America there is one creature who has learned to game the system.  He’s a small spider, and he’s kind of cute (for a spider).  He’s called Bagheera kiplingi, and if you’ve read some Kipling you’re probably chuckling right now.  Yes, he was named after the lithe and agile black panther Bagheera in Kipling’s Jungle Book stories, because he’s a member of a family of lithe and agile spiders called jumping spiders (family Salticidae).  But he was named back in the late 1800’s and the scientist who named him had only a single dead specimen and no idea what it did for a living, so he missed out on one of the most entertaining ecological stories in spiderdom.  It wasn’t until 2001 that people from the University of Arizona started coming down to the Yucatan and studying this thing in situ, and here’s the scoop:  There are 43,678 species of spiders described by science, and this is the only one who is vegetarian.

He lives on the nectar from the extrafloral nectaries that are there for the ants.  And boy, do the ants hate that.  Those ants really want to kill him, but they can’t catch him because he’s a jumping spider.  He spends his whole life in that acacia tree surrounded by ants who want to kill him.  He brings to mind that iconic line delivered so masterfully by Jack Nicholson, playing a Marine Colonel in A Few Good Men.  I can almost see that Nicholson grimace as he says,  “I eat breakfast three hundred yards from four thousand Cubans who are trained to kill me.”  That’s what it’s like for Bagheera kiplingi, but they can’t lay their mandibles on him because he’s capable of amazing athletic feats.  He leaps from thorn to frond to thorn to avoid them, and he spends his down time on old, dried-up parts of the tree that are not patrolled.  But every now and then, when an ant is strolling by carrying a larvae, he’ll mug that sucker and steal the larvae and eat it.  It’s the only time he eats meat, and I think he only does it for retribution.

The jumping spiders in general are also a pretty good yarn, so I’m going to allow myself one of my tangents at this point.  There are about five thousand species of them, and the other 4,999 or so all use their athletic skills to ambush prey insects.  They are known for having excellent eyesight and high cognitive skills (for a spider).  They don’t use muscle contraction in their leaps, they use hydraulic pressure, which is why they don’t have gigantic hind legs like a grasshopper.  They have four pairs of eyes, giving them almost 360-degree vision, and the center pair (called the anterior median eyes) have a very narrow field of vision, but they have good depth perception.  If you’re an insect and he wants to jump you and eat you, he will turn the front of his body toward you to bring those anterior median eyes to bear, then he’ll round on you with the rear abdomen and legs, and then he’ll creep up, step by step, a lot like your house cat stalking a bird.  Finally, the last thing he does before the pounce is attach a strand of silk where he’s standing.  They call it a drag line.  If he misses or things get messy, he can climb back up to where he was, and it also helps him hold his position when he attacks something bigger than he is. But they can use it even more creatively than that.  Sometimes they will attach the drag line in a different location, so that it alters the trajectory of their leap.  They can even use this technique to nail an insect who is on an inverted surface.

Male_peacock_spider2.svg
Pretty, for a spider: A male peacock spider (Maratus volans) does a courtship display
By KDS444
[CC BY-SA 3.0], via Wikimedia Commons

They are known for traversing complicated routes to get in position for an attack, and sometimes the route even takes them out of sight of the prey for a period, which suggests that they have a pretty good memory on board.  They’ve been observed descending from one bush and climbing back up a neighboring one to get at a prey insect, and that kind of detour solving is just way more brain power than scientists can explain in a creature this size.

And man, you should see their courtship displays.  They rival the displays of peacocks and birds of paradise, with shimmering, iridescent blues, reds and yellows, and elaborate dances.  They’re really quite beautiful.

For a spider.

Now you know.

 

 

 

 

 

By |2017-05-24T00:03:05-05:00October 10th, 2014|Nature Essays|7 Comments
Read More
Go to Top